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We could not “catch” the issue 
with a regular profile.



Flame graphs don’t have a time 
dimension, so we created a 

secondary visualization.
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The new visualization helped us 
solve the intermittent behavior 
issue (and a few others).



Plotting the profile as a heatmap 
also enabled us to easily identify 
patterns in them.
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It’s a simple visualization, but it 

allowed us to easily troubleshoot 

certain issues, and identify 

interesting patterns.



https://github.com/Netflix/flamescope



But FlameScope is not a 

full-fledged profiling solution ...



Wasn’t the lowest barrier of entry 

for engineers



We scale our efforts by creating 

easy-to-use tools



Why not have a centralized 

FlameScope?









● Heapdumps.
● Memory allocation profiles.
● More variations of CPU profiles.
● Off-CPU profiles.
● Adding more BPF-based tools.
● And a bpftrace interface.

More profilers.



● Different stack parsers
○ Inverted merge
○ Package/module name
○ Demangle for different programming languages

● Break profiles by PID, TID and CPU

More analysis options.
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● Different stack parsers
○ Inverted merge
○ Package/module name
○ Demangle for different programming languages

● Break profiles by PID, TID and CPU
● Differential flame graphs
● Working on middle-out merge
● Working on cloud-wide analysis

More analysis options.





● Don’t stick with line charts and tables for everything.
● Focus on lowering the barrier of entry.
● Centralized profiling solution helped with discoverability.
● All profiles are in the same place.
● Development cycle is faster.
● Automation is key to doing more.

Takeaways.
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