
FlameCommander
Netflix’s cloud profiler.

MARTIN SPIER
PERFORMANCE ENGINEER

@spiermar







We could not “catch” the issue 
with a regular profile.



Flame graphs don’t have a time 
dimension, so we created a 

secondary visualization.





Time

Latency (or some other metric)



Time (Seconds)

Time (Fractions of a second)



Brendan Gregg, 2018







The new visualization helped us 
solve the intermittent behavior 
issue (and a few others).



Plotting the profile as a heatmap 
also enabled us to easily identify 
patterns in them.



Single thread, once a sec.



Two threads.



One busy-wait thread, once a sec.



One heavy busy-wait thread.



One busy-wait thread, doing less.



One busy-wait thread, every 5s.



100% CPU.



50%.



25%.



5%.



Load increasing.



Variable load.



CPU perturbations.



CPU blocking.





It’s a simple visualization, but it 

allowed us to easily troubleshoot 

certain issues, and identify 

interesting patterns.



https://github.com/Netflix/flamescope



But FlameScope is not a 

full-fledged profiling solution ...



Wasn’t the lowest barrier of entry 

for engineers



We scale our efforts by creating 

easy-to-use tools



Why not have a centralized 

FlameScope?









● Heapdumps.
● Memory allocation profiles.
● More variations of CPU profiles.
● Off-CPU profiles.
● Adding more BPF-based tools.
● And a bpftrace interface.

More profilers.



● Different stack parsers
○ Inverted merge
○ Package/module name
○ Demangle for different programming languages

● Break profiles by PID, TID and CPU

More analysis options.





● Different stack parsers
○ Inverted merge
○ Package/module name
○ Demangle for different programming languages

● Break profiles by PID, TID and CPU
● Differential flame graphs

More analysis options.





● Different stack parsers
○ Inverted merge
○ Package/module name
○ Demangle for different programming languages

● Break profiles by PID, TID and CPU
● Differential flame graphs
● Working on middle-out merge
● Working on cloud-wide analysis

More analysis options.





● Don’t stick with line charts and tables for everything.
● Focus on lowering the barrier of entry.
● Centralized profiling solution helped with discoverability.
● All profiles are in the same place.
● Development cycle is faster.
● Automation is key to doing more.

Takeaways.



Thank you.
Martin Spier
martinspier.io
@spiermar


